a2 United States Patent

Kataoka et al.

US009448931B2

(10) Patent No.:
45) Date of Patent:

US 9,448,931 B2

Sep. 20, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

ENDIAN CONVERSION METHOD AND (56)
SYSTEM

Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)

Inventors: Akihito Kataoka, Hamura (JP);
Koichiro Yamashita, Hachioji (JP);
Naoki Odate, Akiruno (JP); Takahisa
Suzuki, Kawasaki (JP); Hiromasa
Yamauchi, Kawasaki (JP); Koji
Kurihara, Kawasaki (JP); Toshiya

Jp

Otomo, Kawasaki (JP) TP

Jp

Assignee: FUJITSU LIMITED, Kawasaki (JP) Jp
Jp

Notice: Subject to any disclaimer, the term of this ig
patent is extended or adjusted under 35 P

U.S.C. 154(b) by 241 days. TP

Appl. No.: 14/029,425

Filed: Sep. 17, 2013

5,687,337 A
5,961,640 A * 10/1999

2007/0038429 Al
2007/0299863 Al* 12/2007
2008/0028197 Al*

References Cited

U.S. PATENT DOCUMENTS

11/1997

2/2007
1/2008

Carnevale et al.

Chambers

........... GO6F 13/4013

703/20

Tatsuoka et al.

Fu et al.

Sawai

...................... 707/102
...................... 712/300

FOREIGN PATENT DOCUMENTS

8-278918
2000-305892
2000-330760
2000-330760

3758732
2007-34680
4114900
4346587
2011-39964

A

10/1996
11/2000
11/2000

* 11/2000
3/2006
2/2007
7/2008
10/2009
2/2011

............... GO6F 5/00

OTHER PUBLICATIONS

JP2011/056660.

Prior Publication Data

US 2014/0019710 Al Jan. 16, 2014

Japanese International Preliminary Report on Patentability issued
Oct. 3, 2013 corresponding to International Application No. PCT/

International Search Report mailed May 24, 2011 in corresponding
International Application No. PCT/JP2011/056660.

Japanese Office Action dated Sep. 30, 2014 in corresponding
Japanese Patent Application No. 2013-505650.

Related U.S. Application Data

* cited by examiner

Continuation of application No. PCT/JP2011/056660,
filed on Mar. 18, 2011.

Primary Examiner — llwoo Park

(74) Attorney, Agent, or Firm — Staas & Halsey LLP

Int. CL.

GO6F 13/10 (2006.01) 57 ABSTRACT

GO6F 12/06 (2006.01) An endian conversion method is executed by a CPU, and
Go6t’ 7/76 (2006.01) includes executing a program that includes endian conver-
US. Cl. sion setting; and performing, when accessing an address of
CPC .o, GO6F 12/06 (2013.01); GO6F 7/768 a main memory indicated in the endian conversion setting,

(2013.01); GO6F 2213/0038 (2013.01) endian conversion of data specified by the address of the

Field of Classification Search
None
See application file for complete search history.

Jamf HOAR MO AN CONVERSION SETTING
| ADDRESS
el o010

[vovoones

OXFEDCBASST6543210

oy
(BIG ENDIAN) -

ENDIAN CONVERSION MEGHANISM

0700129900

EUR RTR RS RUE BVE TR BT Bt

oo mw = =]

102

main memory.

12 Claims, 19 Drawing Sheets

olole [olnaaln]
o

el ===

000190000

GPULITTLE ENDIAN; '

71
i | | oxossancresazeazio

)

104

[w ||

103

| 010010000098 BA DC FE 5478 22 10
| cx0010600: ~

RAM

U.S. Patent Sep. 20, 2016 Sheet 1 of 19 US 9,448,931 B2

FIG.1

LOAD MODULE
1414 ENDIAN CONVERSION SETTING]
112
ADDRESS SIZE
ersee OxC3100060 4
OxGO100004 2 o
100
d
#
OxFEDCBASSTEE43210
CPL
(BIG ENDIAN) o
¥
ENDIAN CONVERSION MECHANISM 105
0x00100000

+{ § 1 +2 8 +3] w4 5 | +8 § +F
FEIDCIBATO8 | 76§ 54] 321 10

) AY & o Y <.

&’X‘& 9f><‘i
$O0]+t f 2 [43 #d | +5] +5 | +T 102
98 | BADCIFE | 8 | 76§ 321 10

GPU (LITTLE ENDIAN)
OxQ0100000
&
Ox88BADCFES4763210 1&'_’74
/
BUS

{1

OxGG100000:88 BA DO FE 54 76 32 10
Qx0GH0CO08: - -

RAM

US 9,448,931 B2

Sheet 2 of 19

Sep. 20, 2016

U.S. Patent

\ RMOMETN
CHvO8ATY A | NOY HEYI
802 A¥14SIA 1 va
2z 90¢& G0g
WWW WM m R FERe
N
& N-QN\\ & % W.ON\ 8
k4 k4 & % N
J4 A & 4 4 \/\Vv
PO
¥
. WSHNYHD TN
. NOISHIANCD NYIOND
sop/ 4
- AHOWHIN IHDVYD
\\\
WO HSYH LOZ A1)
£z 1oL
\x\i "
ook A=

U.S. Patent

Sep. 20, 2016 Sheet 3 of 19

US 9,448,931 B2

CPU 104
~~307
100 ENDIAN
PFROGRAM CONVERSION 4303
SETTING
&
311 /312
DETECTING - ACQUIRING
UNIT UNIT
313 /
NOTIFYING
UNIT
¥
CONVERTING .
UNIT —314
ENDHAN CONVERSION 105
MECHANISM
@ 104 S
iE #301 @ 2207
MAIN MEMORY i

U.S. Patent Sep. 20, 2016 Sheet 4 of 19 US 9,448,931 B2

CPRU A0 F§@4

| CACHE MEMORY H-201

PN

] j 408 -
J 105

] BUS INTERFACE (MASTER SIDE) :
< ENDIAN CONVERSION
MECHANISM

407 AR

ACCESS] .. « | WRITE | READ
Tvyre | SiEE | ADDRESS | hara’ | pata
16 A 401
READ oxooioooon | -
BYTES] ENDIAN
CONVERSION

SETTING REGISTER

U NDR e ay

F g ENDIAN
o CONVERSION
SETTING TABLE
7
408
] /4(}2
SWAP INSTRUCTION
GENERATION CIRCUNT
¥ 403
WRITE SWAP
CIRCUIT
404
READ SWAP |«
CIRCUIT

&

3 ¥ 1 ¥
BUS INTERFACE (SLAVE SIDE) f

N408
/104

| 8US E

T:}[/301 @ 207

| MAINMEMORY | | i E

US 9,448,931 B2

Sheet 5 of 19

Sep. 20, 2016

U.S. Patent

; MO AYHME OYIH 0L
clalalsisl6ivia].l.171s51¢ciz11]0 HD cVAS QY O
dlataioiaivieleiziaieleicizlto _
PG NOLYINOAN! NOLLOMMLEN d9MS 031 vHaNTD £0F LINOMIO dYAS T1IM OF
SHID NOLYHANTS
R A S D D 2 D A A I I T B I B NOLLOMMLEN! VRS
4131 010]9iY i gigbsietelv i et ed o] INTWALINED t o/
005] SNELLIS NOISHIANGD NYIGNS T¥nCiAIN ~
, 5000100 ; ; P e
- - ¥ PHO00L00X0) y 000010066) -
- - z £P000100K0 | z H0000100%0)
- - : Z500000%0 | } £0060L00%C) e
i _ (O000L00%G
. - } VH060L00%0)) 200004000) ,
pzes 4 % IP000LE0X0 ; ; 070004 00X0) ; L00605 0048)
b Y0001 0070)) 0L00%0 ; ; 5005010040) w 1705
. R o . e Ny e ‘ oy A
EVAS 953 A 7S SSAWACTY |, N 2718 SSROAAY |, SN
FIEYL ONLLLIS NOISHIANGD NYIONT WNGIA
205 7 .
1108 4 4344415000 COG00L0GH0)
SSIHGMY ONI SRTH0GY LHVLS 14 ALIGIYA
405~ YL YIHY NOISMIANOD NYIONS
U —

HH1SI0EY DN

Loy

5 old

US 9,448,931 B2

Sheet 6 of 19

Sep. 20, 2016

U.S. Patent

206 -1

509~

B000CLO0X0

FOBGOLOOAD

£000CLO0%0

ZO000LO0XG

LOOOGLO0RD

e e b v b e NS

0000000

3218 SEIHUOAY LBY1S

MNOULYAHOON DNILIES
NOISHIANDD NYIOGNS TWNaIAKON

A4443100%0 GO0N0L00XD

S5FECAY ONZ 8800y LS

NOLLYWHOZN W2HY NOIBHIANDD NYIONG

MNOLLYINSO M
DONLLLIS NOISHIANGD NN

CRIIE

EOLIN
4 J0D0%G
4 BOOOXD
209,
Z FOOOXD =
{ pslsity
b Z000X5 g -
m _ M m Jdo uk
i LOOORTD mm.vaw T
' | CO0G%0 ¢ ‘wdA wous paubisun
SRR delme seyn paubisun
p : Y aspEay 10nas
3218 138440 FAPREOU I
LINS=x LeneGH
200 SISATYNY LVIRNOd Wivd YIVQ 103080 NOISHIANOD
9% / .
AN
2 OPO0GLO050
G000 00D A _ OP000LG0X0 <- 7+ J8pEeSy 10NN
h SSILCOY 3I9VE DO000LOOXS <~ LW 1088l Jony3
MNOLLYRRHO-N] ADYAS AMOWIN GING INJWIONYHYY
LNFWIONYENMY Yiva YAV DONINGEONOD NOLLYINEO4M

US 9,448,931 B2

Sheet 7 of 19

Sep. 20, 2016

U.S. Patent

2oL’

1do o718 adA fvime YivG
(48] G bk B | ZF | LF | OF [ANTYA LISILA0
& & & %
{3018 HALSYIN
ADVAHEILIN SN
OL O3 LLNSNYYL YIYS
] f 1 1
sdA {vlue AR
[EVT - PO RS T G PO S~ T B2 B T - N A O B B R A A R E R S/ = R P e
{3 IAYIE)
FOVAHTLINI 08 WOHS
GILLINSNYSL viv0
D0000LO0XG QEIHAOY
igmiaal ol I718
e TdAL BSIODY
L0 oL/

NOLYIRIOANT 85300V 8Ng

U.S. Patent Sep. 20, 2016 Sheet 8 of 19 US 9,448,931 B2

COMPILE SOURCE CODE BY

COMPILER

OBJECT FILE

PemonaAATRR I

¥
I\COBJECT Fitj

/ 5802

DATA FORMAT
ANALYSIS
_RESULT

a54 602
¥ / : /
e - SATE
LOAD MODULE ARRANGEMENT

FORMATIO

5803 $
GENERATE ENDIAN
CONVERSION SETTING
INFORMATION 605

ENDEA\ (‘U‘\JVLR%!ON
SETTING
INFORMATION

|

U.S. Patent Sep. 20, 2016 Sheet 9 of 19 US 9,448,931 B2

FIG.9

CPU 101 ENDIAN CONVERSION

S MECHANISM 108
START) ' ‘

STAR

;5801
P ENDHAN ~.

CONVERSION SETTING

Ny, INFORMATION 805 EXISTS FOR

S, LOAD MODULE 8547

§YES 5902

STORE ENDIAN CONVERSION SETTING
INFORMATION 805 INTQ ENIDIAN CONVERSION
SETTING REGISTER 401

¥

LOAD LOAD MODULE 854 ONTO MAIN MEMORY }:
ity

- 8903

¥

5804

, /sa0r

BUS ACOESS |
TIME PROCESS

3
RECEIVE ACCESS RESPONSE FROM BUS 104

3808

U.S. Patent Sep. 20, 2016 Sheet 10 of 19 US 9,448,931 B2

FIG.10

“OBJECT T
ADDRESS OF BUS _
" ACCESS WITHIN ADDRESS RANGE
e JOF ENDIAN CONVERSION AREA
o, TABLE 5017

SS1007

/31002

AUQUIRE FROM lNDiV!DUAL ENDIAN
CONVERSION SETTING TABLE 502, INDIVIDUA

ENDIAN CONVERSION SETTING
CORRESPONDING TC OBJECT ARDRESS

w’mzmm& :
ENDIAN CONVERSION
- SETTING CORRESPONDING
7O OBJECT ADDRESS
e EKSTS?

YES
¥ J,'S"E GQ4

GENERATE DATA SWAP INSTRUCTION
INFORMATION BASED ON ACQUIRED
!NDS\!EEBUAL ENDEAN L;ONVEHS?ON SETTING

iS008

EXECUTE BUS
ACCESS AS USUAL

U.S. Patent Sep. 20, 2016

F1G.11

READ

+ 781102

ACCESS TYPE 7

§ EXECUTE READ ACCESS

R

¥

/ \QQS
HAS .

DATA ARRIVED FROM BUS
INTERFACE (SLAVE SIDE}
) 4067

YES
‘ ; $1104

Sheet 11 of 19 US 9,448,931 B2

1 /,smm

WRITE

&

/\\\i‘i 107
HAS

“" DATA ARRIVED FROM BUS
. INTERFACE (MASTER SIDE)
4057

YES
Y,
J S1108

| EXECUTE DATA SWAP

4 /81109

TRANSMIT SWAFPED DATA TO BUS
INTERFACE (SLAVE SIDE) 408

EXECUTE DATA BWaAP

4 ;81105

TRANSMIT SWAPPED DATA TO BUS
INTERFACE (MASTER SIDE} 405

ARRIVING DATA
IS LAST DATAT

YES

ARRIVING DATA
IS LAST DATA?

YES
+ PEREEE

I EXECUTE WRITE ACCESS

US 9,448,931 B2

Sheet 12 of 19

Sep. 20, 2016

U.S. Patent

2, U Epal 00CH0000
w T w ONILLIS NOISHIANOD NVIONE |) ioummpy i
B0 Ko g
. it > 504 -
DA NOISHIANGCD NYIGN3 S
LINDHIO T0INGD INFWI0Y 103 é:“\!um LINCWIO NOILYe LIGdY SS300v |
o1 L1395 NOISHIANCD NYIONG TYNGIAG P T
2021 / m (3015 AYIS) F0V-R4T 1N 813 |
‘w £ £ @o._i 2 2
el LMD AYMS OV |
207 : 7 mc
. [LNDN/D NOLLVHINTD NOLLONM SN dvis | YIS 2L
5023 r &0y’
S,
AN
zezoei{i] 7 : 5000010670
:) 4 F006010640 -
;) FHCGLO0K0 } EO0G0L040 *
7 I } ZO000L00%0 T
i 4 100001 00X0 N
7 000610070) 000000640 s
azs | ossmwady | R3S | ssavoay N
FY L OMILLIS NCISHIANDD NYIGNT WNCAIAIOH! - £0050L00%0
V00] G00001 00 BO0CA000K : mmwm wmmm) SSTHAY
SRV | ¢ S5O0V WILING 318vL -
ang IS | onilias NOSUIANGD Nvin3 1 m |
AL YAHY NOISHIANGD MYIONS i OIS HIIEVW 20N 508 r
- Fod 1 &
5071~ FHOYD SMILLES NOISHIANCS NYIONS P ol P e m
- e AHOWA FHOVS . .
LTl 7 70 o S AN

U.S. Patent Sep. 20, 2016 Sheet 13 of 19 US 9,448,931 B2

FIG.13

: 304

OBJECT ;

ADDRESS OF BUS ACCESS ™.

< WITHIN ADDRESS RANGE OF ENDIAN

“enn CONVERSION AREA TABLE
12057

P

ACQUIRE FROM INDIVIDUAL ENDIAN CONVERSION
SETTING TABLE 1208, INDIVIDUAL ENDIAN CONVERSIOH
SETTING CORRESPONDING TO CBJECT ADDRESS

f,/”z\snvavm_ -

ENDIAN CONVERSION ™
. SETTING CORRESPONDING
TC OBJEL,T !\DDRW“

NC

ACQUIRE FROM ENDIAN CONVERSION
SETTING TABLE 1211 ON MAIN MEMORY 301
INDIVIDUAL ENDIAN CONVERSION SETTING
CORRESPONDING TO OBIECT ADDRESS

£ 51308

e NOVIDUAL
ENDIAN CONVERSION
< SETTING CORRESPONDING 10

e OBJECT ADDRESS

NO

YES 31307

SELECT ONE ENTRY QF | NDS\;’EJJAL ENDIAN §
CONVERRION SETTING TABLE 1208

¥ "/ 31 3{)8

OVERWRITE SELECTED ENTRY WITH ENDIAN

CONVERSION SETTING CORRESPONDING TO
QBJECT ADDRESS

51304 \ﬁ ¥ - 51300

GENERATE DATA SWAP INSTRUCTION INFORMATION OF
ACOUIRED IDUAL ENDIAN LC}NV"RQEGN SETTING DATA

U.S. Patent

TWARE DEVELOPMENT TOOL

SO S DOV UV 1 el et e gl

SOF

HARDWARE

s ms ae nn ieme e mmn imm e s o e e e o et e e e e e e

Sep. 20, 2016

J 1403

it %
o = lnt ¥mallocsize); /%

Allocate %/

Sheet 14 of 19

FlG.14

1435

o+t = f(L) /% Read/Write ¥/
prociolp,) /R /O %/

free(n) /% Dispose %/

¢

| COMPLER -1402

¥ WL

1 L OAD Moaukzz_j‘/

o

p = malloc(size); ;1405
set_sndian_mode{p. size, p. 4, LE); f"

st_dhyte ~> p

frealp)
i delete sndian_mode{p, size);

CpU 11

CACHE MEMORY 201

UJ

ENDIAN CONVERSION MECHANISM

— 1401

ENDIAN CONVERSION SETTING CACHE |

1202

L

/A4

| BUS

@ /’361

| MAIN MEMORY |

J/\\ﬁ /207
[I

US 9,448,931 B2

U.S. Patent Sep. 20, 2016 Sheet 15 of 19 US 9,448,931 B2

Afk struct header §) F § G . &E 5

unsignad char attr{4]; 1801
unsignad short typs;
int size; 1502
int opt;

}

vaid func(f

res /1504
struct haader ¥y ,)
h={struct headsr ¥imaliocisizeof veid func()

(struct header)); /% Allocate %/ ; ‘ . . .
e ={stnuct header ®malloc(siveofistruet header §; #1808

i
{
i
=
S
g
i
)
=t
(‘3: hvattr0l=1/% Write ®/ set endian mode(h, sizeofistruct header), $h—>attr B, 1) LE)
i set endian modeth, sizeof{struct headen), 8h->attr[1L 1, LEY
ﬁ: proc jolh, . /A L/ %/ set_sndian_mode(h, sizecfstruct haader, &rdattr 21 1, LEY
O3 set_endian modelh, sizeafstruct header), &rratte 3L | LEY B
%5: frealn); /¢ Dispose */ set_endian modelh, sEzeof-\struct header), &h*’)‘t\,‘ipe, 2, .LE),
< i set_endian modelh, sizeof{struct header), &h-Jsize, 4, LE),
b set endian modelh, sizeof{struct header), &h-Dopt, 4 LE:
A
3
gﬁ‘ ‘é’ cos “
! boatirf0l=1;
| COMPILER)
| ‘é, N ans fraafh) i /1506
; - - !deiete‘endian‘mode(h. sizeofistruct header J): 1'“4?
; T
; LOAD MODULE
; 503
|
5 ¥
; CPU — 101
i || CACHE MEMORY H-201
f iy
1]
g ENDIAN CONVERSION MECHANISM 1431
2f 1 ENDIAN CONVERSION SETTING CACHE |
{ R
T

1202
104

BUS

g i |
{g’ § I} /301 ;} .f:zwg

MAIN MEMORY | |

U.S. Patent Sep. 20, 2016 Sheet 16 of 19 US 9,448,931 B2

FIG.16

e /51604
REGISTRATION OBJECT e no

o M‘

ADDRESS WITHIN ADDRESS
JSANGE OF GLOBAL DATA

¢ YES $1602

ACQUIRE FROM ENDIAN CONVERSION SETTING TABLE 1211 ON
MAIN MEMORY 301, INDIWIDUAL ENDIAN CONVERSION SETTING
CORRESFONDING TC REGISTRATION OBJECT ADDRESS

/’ INDIVIDUAL 51803
_ ENDIAN CONVERSION SETTING ™. YES
CORRESPONDING TO REGISTRATION

OBJECT ADDRESS EXISTS
?

¢ NO /51604
SEARCH FOR EMPTY ENTRY IN ENDIAN CONVERSION
SETTING TABLE 1211 ON MAIN MEMORY 307

k

R S1608
T LT NO

—— EMPTY ENTRY EXISTS? R
4 YES S1608
SET EMPTY ENTRY TO BE VALID i
81607

SET ADDRESS AND SIZE OF INDIVIDUAL ENDIAN CONVERSION
SETTING OF REGISTRATION QRJECT IN ADDRESS FIELD AND
SIZE FIELD OF ENTRY SET TO BE VALID AMONG INDIVIDUAL
ENDIAN CONVERSION SETTING INFORMATION

¥ /31608

SELECT ONE ENTRY OF INDIVIDUAL ENDIAN
CONVERSION SETTING TARLE 1206

4 ,B1609
| SET SELECTED ENTRY TO BE VALID

4 S1610 ¥ 51611
SET ADDRESS AND SIZE OF INDIVIDUAL ENDIAN | CUTPUT -
COMVERSION SETTING OF REGISTRATION OBJECT INDICATION OF
N ADDRESS FIELD AND SIZE FIELD OF THE ERROR

SELECTED ENTRY

U.S. Patent Sep. 20, 2016 Sheet 17 of 19 US 9,448,931 B2

——— FI1G.17

DELETION OBJECT

ADDRESS WITHIN ADDRESS RANGE
OF GLOHN DATA?

701
NO

YES
¥ 51702

ACQUIRE FROM ENDIAN CONVERSION SETTING TABLE 1211 ON |

MAIN MEMORY 301, INDIVIDUAL ENDIAN CONVERSION SETTING
CORRESFONDING TO DELETION OBJECT ADDRESS

INDIVIDUAL \\Z\S\T\?f}i

. ENDIAN CONVERSION
o SETTING CORRESPONDING TO DELETION
g OBJECT ADDRESS EXISTS _ppas

NO

YES

s S31T04
INVALIDATE ACQUIRED INDIVIDUAL ENDIAN CONVERSION SETTING E

3 81705

ACQUIRE FROM INDIVIDUAL ENDIAN CONVERSION SETTING
TABLE 1206, INDIVIDUAL ENDIAN CONVERSION SETTING
CORRESPONDING TO DELETION OBJECT ADDRESS

l

INDIVIDUAL \537 708
ENDIAN CONVERSION :
gy, SETTING CORRESPONDING TG DELET EGN
BJECT ADDRESS EXISTS

YES
% SS1707 ¢ /51708

CONVERSION SETTING INDICATION OF
AN ERROR

INVALIDATE ACQUIRED INDIVIDUAL ENDIAN § CQUTPUT §

US 9,448,931 B2

Sheet 18 of 19

Sep. 20, 2016

v S000%0 AMHHM v 2000%0 AMHHM ydo
iR
¥ 2O00X0 14 BO00 ‘adAy poys paubsun
Z P0G Hrline ey paulisun
z FOO0XD - e Y impeey Jonue
b Lo : s .
P Z000X0 COEL/ LA
b Z000%0 YEYG LIEME0 NOISYIANGD
: N
) LO00%0 : 000%0
L 0O00X0 b WWWNMW
: EREA Aol 37S AR g 4460010070
o8- e A5 30 o »zxﬁmJvaavmmewwwzm orH GoEoanoa
’ f - abded o \ el y Y
e e e M e SIGATYNY LYIRIOH V1vG frils AHE00L00%0
NOISHIANOD NYIONS TYNCIAIONE ORECOLO0XD
A-3000LH0X0
"
telH BO0G0L00X0
HE00%0 | 44E00100%X0 | 00000L00X0 .A\\\\\ 17l Mmmmmwmmwm
A -t) ST Bl M
sowp | SSEHACY | SSEHOLY T — - 420001 00%0
zoeL’ MO YINYOAN] 0r000L00X0
YAHY NOISHIANOD NVIONT - 4800010040
0O0G0 LOOXD
MOLLYIWHO AN LRl CIBLIH 1spEey s
ONILLTS NDISHIANGD NYIONT

U.S. Patent

AOVLS AHOWZEN OINO INAWIDNY MY
V193 ONINGZONOD NOLLYWHOAN

angtL’”

8L old

US 9,448,931 B2

Sheet 19 of 19

Sep. 20, 2016

U.S. Patent

LMD NOLEVHENES
NOLLDONISNI Y3
® b/
,?Illlllgllllll!l
- - 0 - 3 eI
- - b - b
S ——
. . i - L OROBGLE0XG
- - i 1
AvA DY ; ATA Yl - - G
3218 mee 4 47i5 0 S
148440 ALIGNYA LAS440 AL YA o SSaH0Y SSIITY ey
+ P YIS
1 LHL0BL e LBy06 e FIEY L YEEY NOISHBANGT NYIGNT
- - {} i SOO0XD L
iy 200050 i P FALLELS, L
¥ 2000x0 b 2 LEOox 2
Z OO0 14 b 0000%0 b
T7is AVTvA oY g7 ANA 5991 48000 448001 G0X0 DOC00LOBEG i
e L3844 L = 4544 LG A .
L3SHH0 JALIGNYA L5440 1ALIOTY - Y S Sv 1
A e LS ALIGTA
s S ;- ! - AL VAY NOISHIANDD NYIONT

HILEIDTY DNILLIS NOISYIANOD NYIONS

6191

US 9,448,931 B2

1
ENDIAN CONVERSION METHOD AND
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JIP2011/056660, filed on Mar. 18,
2011 and designating the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to an
endian conversion method and a system that perform endian
conversion.

BACKGROUND

Byte order is arrangement of data in terms of bytes and is
conventionally prescribed as specifications of a processor
and a data format when the processor handles multiple bytes.
The byte order is broadly classified into little endian and big
endian. The little endian is the arrangement in which bytes
are stored in the order from the least significant byte. The big
endian is the arrangement in which bytes are stored in the
order from the most significant byte.

If byte order specification of a processor is different from
data format specification, when processing corresponding
data, the processor rearranges the data in terms of bytes. The
rearrangement in terms of bytes is referred to as endian
conversion.

For example, a technique is disclosed that, when an
apparatus transmits/receives data with respect to another
apparatus having byte order different from the apparatus,
that apparatus transmits the data after software swaps the
data or swaps received data before reading the data (here-
inafter referred to as a conventional technique 1).

A technique of performing the endian conversion is
disclosed as a technique of performing the endian conver-
sion within a processor (see, e.g., Japanese Laid-Open
Patent Publication Nos. H8-278918 and 2007-34680). A
technique of performing the endian conversion by other
hardware is disclosed as a technique of performing the
endian conversion with a bus having a swap circuit (see, e.g.,
Japanese Laid-Open Patent Publication No. 2000-305892).

However, in the conventional techniques described above,
the technique according to the conventional technique 1 uses
conversion by software and therefore has a problem of
deterioration in processing performance. Although the tech-
niques according to Japanese Laid-Open Patent Publication
Nos. H8-278918 and 2007-34680 enables high-speed pro-
cessing because hardware can be used, a processor operates
at high speed and therefore, if an endian conversion mecha-
nism is added, it is problematically difficult to maintain the
processing performance of the processor. Although the tech-
nique according to Japanese [aid-Open Patent Publication
No. 2000-305892 enables endian conversion of entire bus
width, it is difficult to perform the endian conversion with a
complicated data structure such as performing the endian
conversion for a portion of an address range within the bus
width.

SUMMARY

According to an aspect of an embodiment, an endian
conversion method is executed by a CPU, and includes

10

15

20

25

30

35

40

45

50

55

60

65

2

executing a program that includes endian conversion setting;
and performing, when accessing an address of a main
memory indicated in the endian conversion setting, endian
conversion of data specified by the address of the main
memory.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an explanatory view of endian conversion
operation of a system 100 according to a first embodiment;

FIG. 2 is a block diagram of hardware of the system 100
according to the first embodiment;

FIG. 3 is a block diagram of functions of the system 100;

FIG. 4 is an explanatory view of the inside of an endian
conversion mechanism 105;

FIG. 5 is an example of the contents of the endian
conversion setting register 401 and an example of swap
instruction generation according to the first embodiment;

FIG. 6 is an explanatory view of an example of generation
of endian conversion setting information;

FIG. 7 is an explanatory view of an endian conversion
example;

FIG. 8 is a flowchart of a program build process;

FIG. 9 is a flowchart of a program execution process;

FIG. 10 is a flowchart (part 1) of a bus access time process
according to the first embodiment;

FIG. 11 is a flowchart (part 2) of the bus access time
process according to the first embodiment;

FIG. 12 is an explanatory view of the inside of an endian
conversion mechanism 1201 according to a second embodi-
ment;

FIG. 13 is a flowchart (part 1) of the bus access time
process according to the second embodiment;

FIG. 14 is an explanatory view of endian conversion
operation of the system 100 according to a third embodi-
ment;

FIG. 15 is an explanatory view of an addition example of
APIs when a registration object of an endian conversion
setting is a structure;

FIG. 16 is a flowchart of an endian conversion setting
information registration process;

FIG. 17 is a flowchart of an endian conversion setting
information deletion process;

FIG. 18 is an explanatory view of endian conversion
operation of the system 100 according to a fourth embodi-
ment; and

FIG. 19 is an explanatory view of an example of the
contents of an endian conversion setting register 1901
according to the fourth embodiment.

DESCRIPTION OF EMBODIMENTS

Embodiments of an endian conversion method and a
system will be described in detail with reference to the
accompanying drawings.

FIG. 1 is an explanatory view of endian conversion
operation of a system 100 according to a first embodiment.
The system 100 includes a central processing unit (CPU)
101, a graphical processing unit (GPU) 102, and a random
access memory (RAM) 103. The units are connected

US 9,448,931 B2

3

through a bus 104. The CPU 101 and the bus 104 are
connected through an endian conversion mechanism 105. It
is assumed that the endian of the CPU 101 is big endian
while the endian of the GPU 102 is little endian. The CPU
101 and the RAM 103 will be described in detail with
reference to FIG. 2.

It is also assumed that the CPU 101 loads a load module
111 executable by the CPU 101. It is assumed that applica-
tion software (hereinafter referred to as “application”) gen-
erated by executing the load module 111 is an image editing
application. The load module 111 is correlated with an
endian conversion setting 112. A memory area 113 in the
RAM 103 represents memory contents after an address
0x00100000.

The endian conversion setting 112 has two fields includ-
ing address and size. The endian conversion setting 112
depicted in FIG. 1 has a description of instructions for
performing endian conversion of 4 [bytes] starting from the
address 0x00100000 and for performing endian conversion
of 2 [bytes] starting from the address 0x00100004.

When activating the application by the load module, the
CPU 101 notifies the endian conversion mechanism 105 of
the endian conversion setting 112. It is assumed that the
application executes an image process for the GPU 102.
Since the endian is different between the CPU 101 and the
GPU 102, an endian conversion process occurs. It is
assumed that data used as an argument of the image process
is stored in 8 [bytes] from 0x00100000.

The CPU 101 gains write access through the application
to the address 0x00100000. The data to be written is
OxFEDCBA9876543210. The endian conversion mecha-
nism 105 detects the write access and converts data arrange-
ment according to the endian conversion setting 112.

For example, the endian conversion mechanism 105
swaps data of zeroth to third bytes of 0x00100000. As a
result, the data of the zeroth to third bytes of 0x00100000 is
converted from OxFEDCBA98 to Ox98BADCFE. The
endian conversion mechanism 105 swaps data of fourth to
fifth bytes of 0x00100000. As a result, the data of the fourth
to fifth bytes of 0x00100000 is converted from 0x7654 to
0x5476.

As a result of the conversions, the endian conversion
mechanism 105 converts the data of the write access to
0x98BADCFES4763210 and outputs the data. Subse-
quently, the GPU 102 reads data acting as the argument of
the image process from the memory area 113.

As described above, the system 100 notifies the endian
conversion mechanism 105 outside the CPU 101 of the
range subjected to the endian conversion at the start of a
program and the endian conversion mechanism 105 per-
forms the endian conversion for the specified range. This
enables the system 100 to perform the endian conversion in
a location less likely to adversely affect the performance of
the system 100 and to perform complicated conversion such
as performing endian conversion for a portion of an address
range within the width of the bus 104.

FIG. 2 is a block diagram of hardware of the system 100
according to the first embodiment. In FIG. 2, the system 100
includes the CPU 101, a read-only memory (ROM) 202, and
the RAM 103. The system 100 includes a flash ROM 203,
a flash ROM controller 204, and a flash ROM 205. The
system 100 includes a display 206, an interface (I/F) 207,
and a keyboard 208 as input/output apparatuses for a user
and other devices. The units are connected through the bus
104. The system 100 may omit the GPU 102 depicted in
FIG. 1 and may include a digital signal processor (DSP)
instead of the GPU 102.

10

15

20

25

30

35

40

45

50

55

60

65

4

The CPU 101 is responsible for overall control of the
system 100. The CPU 101 may be a multicore processor
system that includes at least two CPUs. A multicore proces-
sor system is a system of a computer that includes a
processor equipped with multiple cores. As long as multiple
cores are provided, the multicore processor system may be
a single processor equipped with multiple cores or a group
of single-core processors arranged in parallel. The CPU 101
includes a dedicated cache memory 201.

The CPU 101 and the bus 104 are connected through the
endian conversion mechanism 105. If the system 100
includes multiple CPUs, the CPUs are connected through
the respective endian conversion mechanisms 105 to the bus
104. Although in the system 100 depicted in FIG. 2, the
endian conversion mechanism 105 is disposed between the
CPU 101 and the bus 104, the endian conversion mechanism
105 may be disposed at a position of a bus interface etc., to
an external destination outside the large scale integration
(LSI), for example.

The ROM 202 stores programs such as a boot program.
The RAM 103 is used as a work area of the CPU 101. The
flash ROM 203 is a flash ROM with high readout speed and
is a NOR flash memory, for example. The flash ROM 203
stores system software such as an operating system (OS),
applications, etc. For example, when the OS is updated, the
system 100 receives a new OS through the I/F 207 and
updates the old OS stored in the flash ROM 203 with the
received new OS.

The flash ROM controller 204 controls the reading and
writing of data with respect to the flash ROM 205, under the
control of the CPU 101. The flash ROM 205 is a flash ROM
for the main purpose of storage and transfer of data and is
a NAND flash memory, for example. The flash ROM 205
stores data written under the control of the flash ROM
controller 204. Specific examples of data include image
data, video data, etc., acquired through the I/F 207 by a user
using the system 100, and a program executing the endian
conversion method according to this embodiment may be
stored. For example, a memory card and an SD card may be
employed as the flash ROM 205.

The display 206 displays, for example, data such as text,
images, functional information, etc., in addition to a cursor,
icons, and/or tool boxes. A thin-film-transistor (TFT) liquid
crystal display and the like may be employed as the display
206.

The I/F 207 is connected to a network 209 such as a local
area network (LAN), a wide area network (WAN), and the
Internet through a communication line and is connected to
other apparatuses through the network 209. The I/F 207
administers an internal interface with the network 209 and
controls the input and output of data with respect to external
apparatuses. For example, a modem or a LAN adaptor may
be employed as the I/F 207.

The keyboard 208 includes, for example, keys for input-
ting letters, numerals, and various instructions and performs
the input of data. Alternatively, a touch-panel-type input pad
or numeric keypad, etc. may be adopted.

Functions of the system 100 will be described. FIG. 3 is
a block diagram of functions of the system 100. The system
100 includes a detecting unit 311, an acquiring unit 312, a
notifying unit 313, and a converting unit 314. The functions
acting as a control unit (the detecting unit 311 to the
notifying unit 313) are implemented by executing on the
CPU 101, programs stored in a storage device. For example,
the storage device includes the ROM 202, the RAM 103, the
flash ROM 203, and the flash ROM 205 depicted in FIG. 2.
The system 100 can access a main memory 301.

US 9,448,931 B2

5

The system 100 can execute a program 302 including an
endian conversion setting 303. The converting unit 314 is
executed by the endian conversion mechanism 105 to imple-
ment the function thereof. The endian conversion setting 303
has description of an address range to be subjected to the
endian conversion. A method of specifying the address range
may be combination of a start address and an end address or
combination of a start address and a size.

The main memory 301 is a primary storage device that
can be accessed by the CPU 101. For example, the main
memory 301 may be the entire RAM 103 or a portion of the
RAM 103.

The detecting unit 311 has a function of detecting that a
program including the endian conversion setting is executed.
For example, the detecting unit 311 detects that the program
302 including the endian conversion setting 303 is executed.
Information indicative of the detection is stored in a storage
area such as a register of the CPU 101, a cache memory, and
the main memory 301.

The acquiring unit 312 has a function of acquiring the
endian conversion setting of the program if the detecting
unit 311 detects that the program is executed. For example,
the acquiring unit 312 acquires the endian conversion setting
303. The acquired endian conversion setting 303 is stored in
the storage area such as the register of the CPU 101, the
cache memory, and the main memory 301.

The notifying unit 313 has a function of notifying the
converting unit 314 of the acquired endian conversion
setting. For example, the notifying unit 313 notifies the
converting unit 314 of the endian conversion setting 303.
Information indicative of the notification is stored in the
storage area such as the register of the CPU 101, the cache
memory, and the main memory 301.

The converting unit 314 has a function of performing the
endian conversion of data specified by an address of the
main memory 301 when accessing the address of the main
memory 301, based on the endian conversion setting of the
notification. For example, it is assumed that the endian
conversion setting 303 has description of a command for
performing the endian conversion of two bytes from the
address 0x00100004. In this case, when accessing the
addresses 0x00100000 to 0x0010000F, the converting unit
314 swaps data of 0x00100004 and 0x00100005 to perform
the endian conversion.

As described above, the system 100 includes between the
CPU 101 and the bus 104, the converting unit 314 that
converts the order in a byte string within an address range
specified by access from the CPU 101 and detects that the
program is executed by the CPU 101. If the program is
detected, the system 100 subsequently causes the CPU 101
to acquire the address range for conversion of the order in
the byte string corresponding to the program and causes the
CPU 101 to notify the converting unit 314 of the address
range.

FIG. 4 is an explanatory view of the inside of the endian
conversion mechanism 105. The endian conversion mecha-
nism 105 includes an endian conversion setting register 401,
a swap instruction generation circuit 402, a write swap
circuit 403, and a read swap circuit 404. The endian con-
version mechanism 105 includes a bus interface (master
side) 405 acting as an interface with the CPU 101 and a bus
interface (slave side) 406 acting as an interface with the bus
104.

The endian conversion setting register 401 is a register
storing an endian conversion setting table 408 that includes
an instruction area of the endian conversion and individual
conversion setting contents in the instruction area. Details of

20

30

40

45

55

6

the endian conversion setting register 401 will be described
later with reference to FIG. 5. An example of generation of
endian conversion setting information underlying the endian
conversion setting table 408 will be described later with
reference to FIG. 6.

The swap instruction generation circuit 402 is a circuit
that, when bus access occurs, generates swap instructions of
a predetermined unit, based on the address of the bus access
and the size of the bus access. The predetermined unit is a
unit of bytes, for example. For example, the swap instruction
generation circuit 402 refers to the endian conversion setting
table 408 and generates swap instructions based on indi-
vidual endian conversion settings that are equivalent in
number to the bus access size (number of bytes). An
example of swap instructions generated by the swap instruc-
tion generation circuit 402 will be described later with
reference to FIG. 5.

The write swap circuit 403 is a circuit that based on the
swap instruction information of the swap instruction gen-
eration circuit 402, rearranges by a predetermined unit, data
that is transmitted from the bus interface (master side) 405
at the time of write access to the bus 104. Similarly, the read
swap circuit 404 is a circuit that based on the swap instruc-
tion information of the swap instruction generation circuit
402, rearranges by a predetermined unit, data that is trans-
mitted from the bus interface (slave side) 406 at the time of
read access to the bus 104.

The bus interface (master side) 405 and the bus interface
(slave side) 406 transmit/receive data according to a data
format 407. The data format 407 includes three fields
including access type, size, and address. The data format
also includes either a write data field or a read data field
depending on a value obtained as the access type.

The access type field stores an identifier indicative of
whether data to be transmitted/received is data consequent to
a read access or data consequent to a write access. For
example, “READ” in the access type field indicates data
consequent to a read access and “WRITE” in the access type
field indicates data consequent to a write access. The size
field stores a data size of transmitted/received data. The
address field stores an initial address of transmitted/received
data. The write data field stores data transmitted at the time
of write access. The read data field stores data received at the
time of read access.

For example, in the example of FIG. 4, it is assumed that
the CPU 101 issues a read access for 16 bytes starting from
the address 0x00100000. In this case, the bus interface
(slave side) 406 transmits data with “READ” stored in the
access type field, 16 [bytes| stored in the size field,
“0x00100000” stored in the address field, and read data
stored in the read data field.

The swap instruction generation circuit 402 refers to the
size field and the address field of the data format 407 to
acquire the individual endian conversion setting and gener-
ates swap instructions. The write swap circuit 403 performs
a swap for the write data field if swap instructions are
present. Similarly, the read swap circuit 404 performs a swap
for the read data field if swap instructions are present.

The endian conversion mechanism 105 may perform
transfers of the same size as the bus width of the bus
interface (master side) 405 and the bus interface (slave side)
406 or may perform transfers of a size less than or equal to
the bus width. For example, the endian conversion mecha-
nism 105 may transfer data such that the size field indicates
8 [bytes].

FIG. 5 is an example of the contents of the endian
conversion setting register 401 and an example of swap

US 9,448,931 B2

7

instruction generation according to the first embodiment.
The endian conversion setting register 401 stores the endian
conversion setting table 408. The endian conversion setting
table 408 includes an endian conversion area table 501 and
an individual endian conversion setting table 502.

The endian conversion area table 501 includes three fields
of validity flag, start address, and end address. The validity
flag field stores a value that indicates whether the corre-
sponding record is valid. For example, if the validity flag
field has “17, this indicates that the corresponding record is
valid. If the validity flag field has “0”, this indicates that the
corresponding record is invalid. The start address field stores
an initial address to be subjected to the endian conversion.
The end address field stores an end address to be subjected
to the endian conversion.

For example, the endian conversion area table 501
depicted in FIG. 5 indicates that a record 501-1 is valid and
that an object area of endian conversion is from 0x00100000
to Ox001FFFFF. Although the record 501-1 is registered in
the endian conversion area table 501, multiple records may
be registered.

The individual endian conversion setting table 502 has
three fields including validity flag, address, and size. The
validity flag field stores a value that indicates whether the
corresponding record is valid. The address field stores an
initial address from which a swap is started. The size field
stores the number of bytes to be swapped. One record of the
individual endian conversion setting table 502 is referred to
as one entry.

For example, the individual endian conversion setting
table 502 depicted in FIG. 5 has entries 502-1 to 502-14
registered as a valid record group. The entries 502-1 to 502-4
represent the individual endian conversion setting of one
byte starting from the addresses 0x00100000 to
0x00100003. The entry 502-5 represents the individual
endian conversion setting of two bytes starting from the
address 0x00100004. The entries 502-6 and 502-7 represent
the individual endian conversion setting of four bytes start-
ing from the addresses 0x00100008 and 0x0010000C.

Similarly, the entries 502-8 to 502-11 represent the indi-
vidual endian conversion setting of one byte starting from
the addresses 0x00100040 to 0x00100043. The entry 502-12
represents the individual endian conversion setting of two
bytes starting from the address 0x00100044. The entries
502-13 and 502-14 represent the individual endian conver-
sion setting of four bytes starting from the addresses
0x00100048 and 0x0010004C.

The swap instruction generation circuit 402 detects access
to 16 [bytes] starting from 0x00100000. In the following
description, 0x00100000 is set as an object address. The
swap instruction generation circuit 402 determines whether
the object address is within an address range defined by the
start address and the end address of the endian conversion
area table 501. Since the object address is within the address
range in the example of FIG. 5, the swap instruction gen-
eration circuit 402 then acquires offset values and swap sizes
used as the individual endian conversion setting for 16
[bytes] from the start address. The offset values are offset
values represented in hexadecimal.

The acquired object offsets and swap sizes are values
depicted in individual endian conversion setting 503 corre-
sponding to the object address. For example, offset values 0
to 3 have a swap size of 1; an offset value 4 has a swap size
of 2; and offset values 8 and C have a swap size of 4. After
the acquisition, the swap instruction generation circuit 402
generates swap instruction information 504 in terms of
bytes. The swap instruction generation circuit 402 notifies

10

15

20

25

30

35

40

45

50

55

60

65

8

the write swap circuit 403 and the read swap circuit 404 of
the generated swap instruction information 504.

For example, the instruction contents of the swap instruc-
tion information 504 indicate that the data of the offset value
4 is to be set at the data position of the offset value 5 and the
data of the offset value 5 is to be set at the data position of
the offset value 4. Similarly, the instruction contents of the
swap instruction information 504 indicate that the data of the
offset value 8 is to be set at the data position of the offset
value B and cause the data of the offset value 9 is to be set
at the data position of the offset value A. The instruction
contents of the swap instruction information 504 indicate
that the data of the offset value A is to be set at the data
position of the offset value 9 and the data of the offset value
B is to be set at the data position of the offset value 8.
Similarly, the instruction contents of the swap instruction
information 504 indicate that the offset values C to F are to
be set at the data positions of the offset values F to C,
respectively.

FIG. 6 is an explanatory view of an example of generation
of endian conversion setting information. The endian con-
version setting information is generated by a compiler and a
linker at the time of generation of a load module. The linker
assigns a global variable present in a program to a memory
space at the time of generation of a load module. For
example, for information on data arrangement onto a
memory space depicted in a rectangle 601, the linker assigns
global variables H1 and H2 having a form of a header
structure by using 0x00100000 and 0x00100040, respec-
tively, as base addresses. The linker generates data arrange-
ment information 602 from the base addresses of the assign-
ment.

The compiler analyzes offset values from the base
addresses and sizes of members of the structure, based on a
conversion object data format of the header structure
depicted in a rectangle 603 at the time of generation of an
object file to generate data format analysis result 604. For
example, for a member variable attr[4] that is arrangement
of unsigned one-byte data of the header structure, the
compiler analyzes that attr[0] has an offset value 0x0000 and
size 1. Similarly, the compiler analyzes that attr[1] has an
offset value 0x0001 and size 1, analyzes that attr[2] has an
offset value 0x0002 and size 1, and analyzes that attr[3] has
an offset value 0x0003 and size 1.

Similarly, the compiler analyzes that unsigned two-byte
data of a member variable “type” has an offset value 0x0004
and size 2. The compiler analyzes that four-byte data of a
member variable “size” has an offset value 0x0004 and size
2 and analyzes that four-byte data of a member variable
“opt” has an offset value 0x0004 and size 2.

The linker generates endian conversion setting informa-
tion 605 based on the data arrangement information 602 and
the data format analysis result 604. The endian conversion
setting information 605 includes endian conversion area
information 606 and individual endian conversion setting
information 607. The endian conversion area information
606 and the individual endian conversion setting informa-
tion 607 are information acquired by removing the validity
flag fields from the endian conversion area table 501 and the
individual endian conversion setting table 502 in the endian
conversion setting table 408. Therefore, the fields of the
endian conversion area information 606 and the individual
endian conversion setting information 607 will not be
described.

The linker sets the start address and the end address of the
endian conversion area table 501 such that the base address
group of the data arrangement information 602 is entirely

US 9,448,931 B2

9

included. Although the linker sets the start address and the
end address as a continuous area of 0x00100000 to
0x001FFFFF in FIG. 6, multiple areas may separately be set
in two or more records. The linker sets an address in the
individual endian conversion setting table 502 to a value
acquired by adding a base address of the data arrangement
information 602 and an offset value of the data format
analysis result 604.

As a result, the endian conversion setting information 605
is generated by the compiler and the linker. The endian
conversion setting information 605 may be generated by a
designer etc., of an application.

FIG. 7 is an explanatory view of an endian conversion
example. FIG. 7 depicts an endian conversion example of
the read swap circuit 404. To the bus 104, the CPU 101
transmits bus access information 701 including a read access
having an address size of 16 [bytes] and an access destina-
tion address 0x00100000. The bus 104 acquires data of the
access destination address from the main memory 301 etc.,
and notifies the endian conversion mechanism 105 of the
data. The endian conversion mechanism 105 converts the
data 702 transmitted from the bus interface (slave side) 406
into data 703 transmitted to the bus interface (master side)
405 based on the swap instruction information 504.

For example, the endian conversion mechanism 105 per-
forms conversion based on the conversion object data format
of the header structure depicted in the rectangle 603. The
data of the offset values 0 to 3 storing the member variable
attr[4] is one-byte data and therefore is not converted by the
endian conversion mechanism 105.

The data of the offset values 4 and 5 storing the member
variable “type” is two-byte data and is subjected to the
endian conversion by the endian conversion mechanism
105. Similarly, the data of the offset values 8 to B storing the
member variable “size” and the data of the offset values C
to F storing the member variable “opt™ are four-byte data
and are subjected to the endian conversion by the endian
conversion mechanism 105. The offset values 6 and 7
without instruction may be handled in the same way as
one-byte data.

Based on the above description, the system 100 uses the
already generated endian conversion setting and the endian
conversion mechanism 105 to perform the endian conver-
sion during execution of the program. FIG. 8 depicts a
process at the time of program building and FIG. 9 depicts
an execution process of the built program. FIGS. 10 and 11
depict a process when a bus access occurs in the program in
execution.

FIG. 8 is a flowchart of a program build process. An
apparatus executing the program build process may be the
system 100 or another apparatus having a cross compiler. In
the description of FIG. 8, it is assumed that the CPU 101 in
the system 100 executes the program build process.

The CPU 101 uses the compiler to compile source code
(step S801). As a result of execution, the CPU 101 generates
an object file 851 and a data format analysis result 604. The
CPU 101 uses the linker to form a link based on the
generated object file 851 and an object file group 852
generated by compiling other source codes (step S802). As
a result of execution, the CPU 101 generates a load module
854 and data arrangement information 602.

The CPU 101 generates the endian conversion setting
information 605 based on the generated data format analysis
result 604 and a data format analysis result 853 generated by
a designer, etc. (step S803).

FIG. 9 is a flowchart of a program execution process. The
CPU 101 determines whether the endian conversion setting

10

15

20

25

30

35

40

45

50

55

60

65

10

information 605 exists for the load module 854 to be
executed (step S901). If the endian conversion setting infor-
mation 605 exists (step S901: YES), the CPU 101 stores the
endian conversion setting information 605 into the endian
conversion setting register 401 in the endian conversion
mechanism 105 (step S902). After the storage, or if the
endian conversion setting information does not exist (step
S901: NO), the CPU 101 loads the load module 854 onto the
main memory 301 (step S903). After loading, the CPU 101
starts execution of the loaded program (step S904).

After starting execution of the program, the CPU 101
determines whether the program is to be terminated (step
S905). If the program is to be terminated (step S905: YES),
the CPU 101 terminates the program. If the program is to be
continued (step S905: NO), the CPU 101 makes an access
request to the bus 104 during the program execution (step
S906). The CPU 101 waits until a response to the access
request is received from the bus 104.

When detecting the access request to the bus, the endian
conversion mechanism 105 executes a bus access time
process (step S907). Details of the bus access time process
will be described later with reference to FIGS. 10 and 11. As
a result of execution of the bus access time process by the
endian conversion mechanism 105, a response to the access
request is output to the CPU 101. The CPU 101 receives the
access response from the bus 104 (step S908) and goes to the
operation at step S905.

FIG. 10 is a flowchart (part 1) of the bus access time
process according to the first embodiment. The endian
conversion mechanism 105 determines whether the object
address of the bus access is within the address range of the
endian conversion area table 501 (step S1001). If the object
address is within the address range (step S1001: YES), the
endian conversion mechanism 105 acquires individual
endian conversion setting corresponding to the object
address from the individual endian conversion setting table
502 (step S1002).

The endian conversion mechanism 105 then determines
whether the individual endian conversion setting corre-
sponding to the object address exists (step S1003). If the
individual endian conversion setting corresponding to the
object address exists (step S1003: YES), the endian conver-
sion mechanism 105 generates data swap instruction infor-
mation based on the acquired individual endian conversion
setting (step S1004). After the generation, the endian con-
version mechanism 105 goes to step S1101 depicted in FIG.
11.

If the object address is outside the address range (step
S1001: NO), or if the individual endian conversion setting
corresponding to the object address does not exist (step
S1003: NO), the endian conversion mechanism 105
executes the bus access as usual (step S1005). After the
execution, the endian conversion mechanism 105 terminates
the bus access time process.

FIG. 11 is a flowchart (part 2) of the bus access time
process according to the first embodiment. The endian
conversion mechanism 105 determines an access type of the
bus access (step S1101). If the access type is read (step
S1101: READ), the endian conversion mechanism 105
executes a read access (step S1102). After execution, the
endian conversion mechanism 105 determines whether data
has arrived from the bus interface (slave side) 406 (step
S1103).

If data has arrived (step S1103: YES), the endian conver-
sion mechanism 105 executes data swap (step S1104). After
the execution, the endian conversion mechanism 105 trans-

US 9,448,931 B2

11

mits the swapped data to the bus interface (master side) 405
(step S1105) and then determines whether the arriving data
is the last data (step S1106).

If the arriving data is the last data (step S1106: YES), the
endian conversion mechanism 105 terminates the bus access
time process. If data has not arrived (step S1103: NO), or if
the arriving data is not the last data (step S1106: NO), the
endian conversion mechanism 105 goes to the operation at
step S1103.

If the access type is write (step S1101: WRITE), the
endian conversion mechanism 105 determines whether data
has arrived from the bus interface (master side) 405 (step
S1107).

If data has arrived (step S1107: YES), the endian conver-
sion mechanism 105 executes data swap (step S1108). After
the execution, the endian conversion mechanism 105 trans-
mits the swapped data to the bus interface (slave side) 406
(step S1109), and then determines whether the arriving data
is the last data (step S1110).

If the arriving data is the last data (step S1110: YES), the
endian conversion mechanism 105 executes the write access
(step S1111) and terminates the bus access time process. If
data has not arrived (step S1107: NO), or if the arriving data
is not the last data (step S1110: NO), the endian conversion
mechanism 105 goes to the operation at step S1107.

As described above, according to the endian conversion
method and system according to the first embodiment, a bus
is notified of an address range subjected to the endian
conversion at the start of a program and the endian conver-
sion is performed for a range specified by the bus. This
enables the system to perform the endian conversion in a
location less likely to affect the performance in the system
and to perform complicated conversion such as performing
endian conversion for a portion of an address range within
the bus width.

Although the system according to the first embodiment
has latency of bus access extended by the addition of the
endian conversion mechanism, the effect on the processing
performance of the system is reduced because of the fol-
lowing two reasons. The first reason is that the frequency of
bus access is smaller than the number of times the CPU
accesses the cache. For example, even if the rate of cache
miss is 10%, the bus access occurs only once out of ten
cache accesses. Therefore, the effect on the processing
performance of the system is reduced by performing the
endian conversion in the bus rather than performing the
endian conversion within the CPU. The second reason is that
since the bus access is normally a burst access, the time
required for the endian conversion can be overlapped with
and hidden by another process.

The system according to the first embodiment may gen-
erate the endian conversion setting storing an address range
subjected to the endian conversion when compiling source
code of a program. This enables the system to cover the
entire address range subjected to the endian conversion
without causing missing endian conversion setting, etc.

The endian conversion mechanism according to the first
embodiment may perform the endian conversion when the
object address of the endian conversion is included in the
endian conversion area and the individual endian conversion
setting exists. As a result, the endian conversion mechanism
need not execute a branch process in terms of whether the
individual endian conversion setting exists when the object
address is not included in the endian conversion area.

The endian conversion mechanism 105 according to the
first embodiment has the entire individual endian conversion
setting registered in the individual endian conversion setting

30

35

40

45

50

12

table 502. The system 100 according to a second embodi-
ment takes a form in which a portion of the individual endian
conversion setting is registered into an endian conversion
mechanism 1201 according to the second embodiment while
the other individual endian conversion setting is stored in the
main memory 301.

FIG. 12 is an explanatory view of the inside of the endian
conversion mechanism 1201 according to the second
embodiment. The endian conversion mechanism 1201
includes an endian conversion setting cache 1202 instead of
the endian conversion setting register 401 included in the
endian conversion mechanism 105 according to the first
embodiment. The endian conversion mechanism 1201
includes an individual endian conversion setting replace-
ment control circuit 1203 and an access arbitration circuit
1204. The other hardware included in the endian conversion
mechanism 1201 has the same function as the endian
conversion mechanism 105 according to the first embodi-
ment and therefore will not be described.

The main memory 301 according to the second embodi-
ment stores an endian conversion setting table 1211. It is
assumed that an area of storage of the endian conversion
setting table 1211 is an area starting from the address
0x000F0000. The endian conversion setting table 1211
stored on the main memory 301 includes the endian con-
version area information 606 and the individual endian
conversion setting information 607 depicted in FIG. 6.

The endian conversion setting cache 1202 is a cache
memory storing a portion of an endian conversion setting
table. The endian conversion setting cache 1202 includes an
endian conversion area table 1205 and an individual endian
conversion setting table 1206.

The endian conversion area table 1205 includes an endian
conversion setting table initial address field in addition to the
endian conversion area table 501. The endian conversion
setting table initial address field stores a value of an initial
address that is the storage destination in the main memory
301 for the endian conversion setting table set in the endian
conversion setting cache 1202. For example, since the
endian conversion setting table 1211 is set in the endian
conversion mechanism 1201 depicted in FIG. 12,
0x000F0000 is stored in the endian conversion setting table
initial address field.

The individual endian conversion setting table 1206 has
the same fields as the individual endian conversion setting
table 502. Therefore, the fields of the individual endian
conversion setting table 1206 will not be described. It is
assumed that up to 12 entries can be registered in the
individual endian conversion setting table 1206 and the
entries 502-1 to 502-12 are registered. The entries 502-13
and 502-14 are not registered in the individual endian
conversion setting table 1206 and are stored in the endian
conversion setting table 1211.

The individual endian conversion setting replacement
control circuit 1203 is a circuit controlling replacement in
the individual endian conversion setting table 1206. For
example, the individual endian conversion setting replace-
ment control circuit 1203 acquires and writes information of
one entry from the main memory 301 into a record of the
individual endian conversion setting table 1206. For
example, if the entry 502-13 is registered to the individual
endian conversion setting table 1206, the individual endian
conversion setting replacement control circuit 1203 selects
and overwrites one entry of the individual endian conversion
setting table 1206 with the entry 502-13.

The access arbitration circuit 1204 is a circuit arbitrating
between an access request to the bus 104 from the bus

US 9,448,931 B2

13

interface (slave side) 406 and an access request to the bus
104 from the individual endian conversion setting replace-
ment control circuit 1203. For example, the access arbitra-
tion circuit 1204 has a buffer capable of storing an access
request and, while access consequent to one of the access
requests is occurring, if the other access request is made, the
access arbitration circuit 1204 buffers the other access
request. After returning an access response to the one access
request, the access arbitration circuit 1204 notifies the bus
104 of the other access request.

The system 100 uses the endian conversion mechanism
1201 depicted in FIG. 12 to perform the endian conversion.
A program build process and a program execution process
according to the second embodiment are equivalent to the
program build process and the program execution process
according to the first embodiment and therefore will not be
described. A bus access time process (part 2) according to
the second embodiment is equivalent to the bus access time
process (part 2) according to the first embodiment and
therefore will not be described.

FIG. 13 is a flowchart (part 1) of the bus access time
process according to the second embodiment. The endian
conversion mechanism 1201 determines whether the object
address of the bus access is within the address range of the
endian conversion area table 1205 (step S1301). If the object
address is within the address range (step S1301: YES), the
endian conversion mechanism 1201 acquires individual
endian conversion setting corresponding to the object
address from the individual endian conversion setting table
1206 (step S1302).

The endian conversion mechanism 1201 then determines
whether the individual endian conversion setting corre-
sponding to the object address exists (step S1303). If the
individual endian conversion setting corresponding to the
object address exists (step S1303: YES), the endian conver-
sion mechanism 1201 generates data swap instruction infor-
mation based on the acquired individual endian conversion
setting (step S1304). After the generation, the endian con-
version mechanism 1201 goes to step S1101 depicted in
FIG. 11.

If the individual endian conversion setting corresponding
to the object address does not exist (step S1303: NO), the
endian conversion mechanism 1201 acquires the individual
endian conversion setting corresponding to the object
address from the endian conversion setting table 1211 on the
main memory 301 (step S1305). The individual endian
conversion setting information 607 on the main memory 301
is data included in the endian conversion setting information
stored in the information stored in the endian conversion
setting table initial address field.

The endian conversion mechanism 1201 then determines
whether the individual endian conversion setting corre-
sponding to the object address exists (step S1306). If the
individual endian conversion setting corresponding to the
object address exists (step S1306: YES), the endian conver-
sion mechanism 1201 selects one entry of the individual
endian conversion setting table 1206 (step S1307). In a
selecting method of the entry, if an empty entry exists, the
empty entry is directly selected. In the selecting method of
the entry, if no empty entry exists, one entry is selected
according to a substitution algorithm such as Least Recently
Used (LRU) and Least Frequently Used (LFU).

After the selection, the endian conversion mechanism
1201 overwrites the selected entry with the endian conver-
sion setting corresponding to the object address (step
S1308). After overwriting, the endian conversion mecha-
nism 1201 goes to the operation at step S1304.

10

15

20

25

30

35

40

45

50

55

60

65

14

If the object address is outside the address range (step
S1301: NO), or if the individual endian conversion setting
corresponding to the object address does not exist (step
S1306: NO), the endian conversion mechanism 105
executes the bus access as usual (step S1309). After the
execution, the endian conversion mechanism 1201 termi-
nates the bus access time process.

As described above, according to the endian conversion
method and system according to the second embodiment, a
portion of the individual endian conversion setting is regis-
tered into the endian conversion mechanism while the other
individual endian conversion setting is stored in the main
memory. This enables the endian conversion method accord-
ing to the second embodiment to suppress the storage area
storing the individual endian conversion setting. If an
address subjected to the endian conversion has temporal
locality, a frequency of replacement of the individual endian
setting is reduced and therefore, the system can reduce
overhead in terms of performance. The address having
temporal locality corresponds to an address at which a static
variable is stored, for example. The static variable is used
only in a declared function and therefore causes temporal
locality.

The system 100 according to the first and second embodi-
ments notifies the endian conversion mechanisms 105 and
1201 of the endian conversion setting when a program is
loaded. The system 100 according to a third embodiment
notifies an endian conversion mechanism 1401 of the endian
conversion setting when a program is executed. It is
assumed that the endian conversion mechanism 1401
according to the third embodiment is the same hardware as
the endian conversion setting cache 1202 included in the
endian conversion mechanism 1201 according to the second
embodiment.

FIG. 14 is an explanatory view of endian conversion
operation of the system 100 according to the third embodi-
ment. At the time of software development, an apparatus for
software development uses a function of a compiler 1402 to
analyze source code 1403 and extracts a location to which a
registration object address to be subjected to the endian
conversion is allocated. For example, the compiler 1402
extracts the malloc() function and the new operator allo-
cating the heap area or realloc() function, etc. reallocating
the heap area. Similarly, the compiler 1402 extracts the
free() function, the delete operator, etc., releasing the heap
area. The registration object address is within an address
range of a variable stored in the heap area and global data in
which a global variable is stored.

After the extraction, the apparatus for software develop-
ment uses the compiler 1402 to add an Application Pro-
gramming Interface (API) call for giving notification of the
endian conversion setting to a location before the location
subjected to the endian conversion. The location before the
location subjected to the endian conversion is a location to
which the registration object address is allocated, for
example. Similarly, the apparatus for software development
uses the compiler 1402 to add an API call for releasing the
endian conversion setting to a location at which the need for
the endian conversion is eliminated. The need for the endian
conversion is eliminated at a location where the registration
object address is released, for example.

An image of binary code of a load module 1404 with the
API calls added is a code image 1405. To the code image
1405, a code 1406 and a code 1407 are added. The code
1406 is a code added after the malloc() function and is the
API “set_endian_mode(p,size,p,4,L.E)” giving notification
of the endian conversion setting.

US 9,448,931 B2

15

A first argument of set_endian_mode is the initial address
of the registration object address and is set in the start
address field of the endian conversion area table 1205. A
second argument is a size of the registration object address
and a result of addition thereof to the first argument is set in
the end address field of the endian conversion area table
1205. A third argument is an address of the individual endian
conversion setting of the registration object and is set in the
address field of the individual endian conversion setting
table 1206. A fourth argument is a size of the individual
endian conversion setting of the registration object and is set
in the size field of the individual endian conversion setting
table 1206. A fifth argument is stored as an identifier
indicative of ether little endian or big endian.

Similarly, the code 1407 is added after the free() function
and the API “delete_endian_mode(p,size)” giving notifica-
tion of deletion of the endian conversion setting is added. A
first argument of delete_endian_mode is the initial address
of the deletion object address. A second argument is a size
of the deletion object address. A designer of the program
may add commend codes using the APIs into the source
code.

The CPU 101 executes the load module 1404 and when
the API for giving notification of the endian conversion
setting is executed during execution of the program, the
CPU 101 notifies the endian conversion mechanism 1401 of
the endian conversion setting information. The notified
endian conversion mechanism 1401 registers the endian
conversion setting information to the endian conversion
setting cache 1202. It is assumed that the system 100 has a
form of memory-mapped /O allowing an address space of
devices to coexist in the address space of the RAM 103.
Therefore, the CPU 101 can access an address assigned to
the endian conversion setting cache 1202. An endian con-
version setting information registration process will be
described later with reference to FIG. 16.

When the API for giving notification of deletion of the
endian conversion setting is executed during execution of
the program, the CPU 101 notifies the endian conversion
mechanism 1401 of the deletion of the endian conversion
setting information. An endian conversion setting informa-
tion deletion process will be described later with reference
to FIG. 17.

As described above, the endian conversion mechanism
1401 can perform the endian conversion at the timing of bus
access from the CPU 101 for the address set by set_endi-
an_mode().

FIG. 15 is an explanatory view of an addition example of
APIs when a registration object of the endian conversion
setting is a structure. A source code 1501 includes definition
information 1502 of a header structure and variables allo-
cated to the heap area are defined in the form of the header
structure. The apparatus for software development uses the
compiler 1402 to compile the source code 1501 and gener-
ates a load module 1503. An image of binary code of the
load module 1503 with the API calls added is a code image
1504. To the code image 1504, a code 1505 and a code 1506
are added.

The code 1505 has set_endian_mode() added to each
member defined in the header structure. For example, “set_
endian_mode(h,sizeof(struct header),&h—attr[0],1,LE)” is
added to the top of the code 1505.

Arguments will be described. A first argument is set as the
initial address of the registration object address. A second
argument is set as a size of the registration object address,
i.e., a size of the header structure. A third argument is set as
an address of the individual endian conversion setting of the

10

15

20

25

30

35

40

45

50

55

60

65

16

registration object, i.e., an address of h—attr[0]. A fourth
argument is set as a size of the individual endian conversion
setting of the registration object, i.e., a size of h—=>attr[0],
which is 1.

Similarly, in set_endian_mode() from second to fourth
lines, h—attr[1] to h—attr[3] are added as the individual
endian conversion setting of the registration object. In
set_endian_mode() from fifth to seventh lines, h—type,
h—ssize, and h—opt are added as the individual endian
conversion setting of the registration object. In the code
1506, delete_endian_mode() is added. The deletion is
equivalent to the process described with reference to FIG. 15
and therefore, will not be described.

FIG. 16 is a flowchart of the endian conversion setting
information registration process. The endian conversion
mechanism 1401 determines whether a registration object
address is within an address range of global data (step
S1601). If the registration object address is within the
address range (step S1601: YES), the endian conversion
mechanism 1401 acquires individual endian conversion set-
ting corresponding to the registration object address from
the endian conversion setting table 1211 on the main
memory 301 (step S1602).

The endian conversion mechanism 1401 then determines
whether the individual endian conversion setting corre-
sponding to the registration object address exists (step
S1603). If the individual endian conversion setting does not
exist (step S1603: NO), the endian conversion mechanism
1401 searches for an empty entry of the endian conversion
setting on the main memory 301 (step S1604). After the
search, the endian conversion mechanism 1401 determines
whether an empty entry exists (step S1605).

If an empty entry exists (step S1605: YES), the endian
conversion mechanism 1401 sets the empty entry to be valid
(step S1606). The endian conversion mechanism 1401 then
sets the address and the size of the individual endian
conversion setting of the registration object in the address
field and the size field of the entry set valid in the individual
endian conversion setting information (step S1607). After
setting, the endian conversion mechanism 1401 selects one
entry of the individual endian conversion setting table 1206
(S1608). The selecting method of the entry at step S1608
may be the method described at step S1307.

After the selection, the endian conversion mechanism
1401 sets the selected entry to be valid (step S1609). After
setting, the endian conversion mechanism 1401 sets the
address and the size of the individual endian conversion
setting of the registration object in the address field and the
size field of the selected entry (step S1610) and terminates
the endian conversion setting information registration pro-
cess.

If the registration object address is not within the address
range (step S1601: NO), the endian conversion mechanism
1401 outputs indication of an error (step S1611) and termi-
nates the endian conversion setting information registration
process. The error may be output to the CPU 101 or may be
a status register in the endian conversion mechanism 1401
etc.

If no empty entry exists (step S1605: NO), or if the
individual endian conversion setting exists (step S1603:
YES), the endian conversion mechanism 1401 goes to the
operation at step S1611.

FIG. 17 is a flowchart of the endian conversion setting
information deletion process. The endian conversion mecha-
nism 1401 determines whether a deletion object address is
within an address range of global data (step S1701). If the
deletion object address is within the address range (step

US 9,448,931 B2

17
S1701: YES), the endian conversion mechanism 1401
acquires the individual endian conversion setting corre-
sponding to the deletion object address from the endian
conversion setting table 1211 on the main memory 301 (step
$1702).

The endian conversion mechanism 1401 then determines
whether the individual endian conversion setting corre-
sponding to the deletion object address exists (step S1703).
If the corresponding individual endian conversion setting
exists (step S1703: YES), the endian conversion mechanism
1401 invalidates the acquired individual endian conversion
setting (step S1704). After the invalidation, the endian
conversion mechanism 1401 acquires the individual endian
conversion setting corresponding to the deletion object
address from the individual endian conversion setting table
1206 (step S1705).

The endian conversion mechanism 1401 then determines
whether the individual endian conversion setting corre-
sponding to the deletion object address exists (step S1706).
If the individual endian conversion setting corresponding to
the deletion object address exists (step S1706: YES), the
endian conversion mechanism 1401 invalidates the acquired
individual endian conversion setting (step S1707) and ter-
minates the endian conversion setting information deletion
process.

If the individual endian conversion setting corresponding
to the deletion object address does not exist (step S1706:
NO), the endian conversion mechanism 1401 terminates the
endian conversion setting information deletion process. If
the deletion object address is not within the address range
(step S1701: NO), or if the corresponding individual endian
conversion setting does not exist (step S1703: NO), the
endian conversion mechanism 1401 outputs indication of an
error (step S1708). After the output, the endian conversion
mechanism 1401 terminates the endian conversion setting
information deletion process.

As described above, according to the endian conversion
method and system according to the third embodiment,
when the global data is secured during execution, the
individual endian conversion setting is registered and when
the global data is released, the individual endian conversion
setting is deleted. As a result, the endian conversion mecha-
nism according to the third embodiment may have only the
individual endian conversion setting corresponding to the
secured global data. Therefore, the endian conversion
mechanism according to the third embodiment can reduce
the size of the individual endian conversion setting table as
compared to the endian conversion mechanism according to
the second embodiment.

The first to third embodiments are based on the premise
that all the addresses subjected to the endian conversion
setting have the individual endian conversion setting. In a
fourth embodiment, the endian conversion mechanism 105
corresponding to data having a repeated structure such as an
array will be described.

FIG. 18 is an explanatory view of endian conversion
operation of the system 100 according to the fourth embodi-
ment. The linker assigns an array acting as a global variable
present in a program to a memory space at the time of
generation of a load module. For example, for information
on data arrangement onto a memory space depicted in a
rectangle 1801, the linker assigns a global variable H[16]
having a form of a header structure depicted in a rectangle
1803 by using 0x00100000 as a base address.

Elements of H include H[0] assigned to 0x00100000,
H[1] assigned to 0x00100040, H[2] assigned to
0x00100080, and H[3] assigned to 0x00100000. Elements

10

15

20

25

30

35

40

45

50

55

60

65

18

are subsequently assigned from H[4] to H[15] such that one
element size is set to 0x40. The last element H[15] is
assigned to 0x001003FF. The one element size of 0x40 is a
size of the header structure. From such data arrangement
information, the linker generates endian conversion area
information 1802.

The compiler analyzes offset values from the base
addresses and sizes of members of the structure based on a
conversion object data format of the header structure
depicted in a rectangle 1803, at the time of generation of an
object file to generate data format analysis result 1804 for
one element. The data format analysis result 1804 for one
element is information equivalent to the data format analysis
result 604 according to the first embodiment and therefore,
will not be described. The linker directly sets the data format
analysis result 1804 for one element as individual endian
conversion setting information 1805 and combines and sets
the endian conversion area information 1802 and the indi-
vidual endian conversion setting information 1805 as endian
conversion setting information 1806.

The endian conversion area information 1802 is informa-
tion including a mask field in addition to the endian con-
version area information 606 according to the first embodi-
ment. The mask field has a mask value for comparing an
offset value of the data format analysis result 1804 for one
element from the object address. For example, if the object
address is 0x00100044, data of H[1].type is stored at the
object address. In this case, the mask result is 0x00100044&
(0x003F)=0x0004 and therefore, the mask result is identical
to the offset value 0x004 of the data format analysis result
1804 for one element.

The endian conversion mechanism 105 according to the
fourth embodiment will be described. The endian conver-
sion mechanism 105 according to the fourth embodiment
has entirely equivalent hardware and functions, except the
storage contents of the endian conversion setting register
401 and the function of the swap instruction generation
circuit 402, included in the endian conversion mechanism
105 according to the first embodiment. Therefore, the endian
conversion mechanism 105 according to the fourth embodi-
ment will not be described except the endian conversion
setting register 401 and the swap instruction generation
circuit 402. An endian conversion setting register 1901 and
a swap instruction generation circuit 1902 included in the
endian conversion mechanism 105 according to the fourth
embodiment will be described with reference to FIG. 19.

FIG. 19 is an explanatory view of an example of the
contents of the endian conversion setting register 1901
according to the fourth embodiment. The endian conversion
setting register 1901 stores an endian conversion setting
table 1903. In FIG. 19, an endian conversion setting table
1903#0 and an endian conversion setting table 1903#1 are
included in the endian conversion setting register 1901. The
endian conversion setting tables 1903#0 and 1903#1 respec-
tively include endian conversion area tables 1904#0 and
1904#1 and individual endian conversion setting tables
1905#0 and 1905#1.

The endian conversion area table 1904 includes a mask
field in addition to the field group included in the endian
conversion area table 501 according to the first embodiment.
Contents stored in the mask field are equivalent to the endian
conversion area information 1802 and therefore, will not be
described.

The individual endian conversion setting table 1905 is a
table acquired by replacing the address field of the indi-
vidual endian conversion setting table 502 according to the
first embodiment with an offset value field. Contents stored

US 9,448,931 B2

19

in the offset value field are equivalent to the offset value of
the data format analysis result 1804 and therefore, will not
be described.

The swap instruction generation circuit 1902 masks the
address field of the data format 407 with the mask field of
the endian conversion area table 1904. The swap instruction
generation circuit 1902 compares a value acquired by the
masking with the offset value field of the individual endian
conversion setting table 1905 to acquire the individual
endian conversion setting.

The bus access time process according to the fourth
embodiment has step S1002 replaced with “acquiring the
individual endian conversion setting corresponding to an
address acquired by masking the object address with the
mask field from the individual endian conversion setting
table 502”. The other steps of the process are equivalent to
the bus access time process according to the first embodi-
ment and therefore, will not be described.

As described above, according to the endian conversion
method and system according to the fourth embodiment, a
conversion object address is masked and, if the masked
address is identical to the offset value, the endian conversion
is performed. This enables the system according to the
fourth embodiment to support data having a repeated struc-
ture such as an array with smaller individual endian con-
version setting.

For example, it is assumed that a CPU transfers an array
of vertex data when making a request for a 3D process to a
GPU. In such a case, the endian conversion mechanisms of
the first to third embodiments must register the individual
endian conversion setting for all the secured vertex data.
However, the endian conversion mechanism according to
the fourth embodiment can support such a case with the
individual endian conversion setting for one element.

The endian conversion method described in the present
embodiment may be implemented by executing a prepared
program on a computer such as a personal computer and a
workstation. The program is stored on a computer-readable
recording medium such as a hard disk, a flexible disk, a
CD-ROM, an MO, and a DVD, read out from the computer-
readable medium, and executed by the computer. The pro-
gram may be distributed through a network such as the
Internet.

An aspect of the embodiments produces an effect that the
endian conversion is performed without affecting processing
performance in a system and that the endian conversion with
complicated data structure can be performed.

All examples and conditional language provided herein
are intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and
inferiority of the invention. Although one or more embodi-
ments of the present invention have been described in detail,
it should be understood that the various changes, substitu-
tions, and alterations could be made hereto without depart-
ing from the spirit and scope of the invention.

What is claimed is:

1. An endian conversion method executed by a CPU, the
endian conversion method comprising:

executing a program including an endian conversion

setting that includes (1) an address of a main memory
to be subjected to endian conversion and (2) a size that
corresponds to the address and with which the endian
conversion is to be performed; and

15

20

25

30

35

40

45

50

55

60

65

20

performing, when accessing the address included in the
endian conversion setting, the endian conversion of
data that is located at the address specified by the
endian conversion setting and has the size specified by
the endian conversion setting as corresponding to the
address.

2. The endian conversion method according to claim 1,
further comprising

generating the endian conversion setting when source

code of the program is compiled.

3. The endian conversion method according to claim 1,
wherein

the program includes endian conversion deletion notifi-

cation for deleting the endian conversion setting when
access to the address ends.

4. The endian conversion method according to claim 1,
further comprising

comparing the address included in the endian conversion

setting and an address portion specified by a mask in
the address of the main memory to be accessed,
wherein

the performing includes performing, based on a compari-

son result, the endian conversion of the data located at
the address of the main memory.
5. An endian conversion method executed by an endian
conversion mechanism capable of accessing a CPU that
executes a program, the endian conversion method compris-
ing:
determining whether an address of a main memory to be
accessed is included in an endian conversion area and
whether an endian conversion setting exists for the
address of the main memory, wherein the endian con-
version setting includes (1) the address of the main
memory to be subjected to endian conversion and (2) a
size that corresponds to the address and with which the
endian conversion is to be performed; and

performing, based on the determination result and with
reference to the endian conversion setting, the endian
conversion of data that is located at the address speci-
fied by the endian conversion setting and has the size
specified by the endian conversion setting as corre-
sponding to the address.

6. The endian conversion method according to claim 5,
wherein

the determining includes determining whether the endian

conversion setting exists for the address of the main
memory, when in a cache memory, the address of the
main memory is indicated to be included in the endian
conversion area and the endian conversion setting is
indicated to not exist for the address of the main
memory.

7. The endian conversion method according to claim 5,
further comprising

generating, when source code of the program is compiled,

information indicating whether the address of the main
memory is included in the endian conversion area.

8. The endian conversion method according to claim 5,
further comprising

acquiring, when data corresponding to the address of the

main memory is processed, the endian conversion
setting for the address of the main memory.

9. A system comprising:

a CPU that executes a program;

a main memory;

a generation circuit that generates, when an address of the

main memory is accessed, a swap instruction to per-
form endian conversion of data that is located at the

US 9,448,931 B2

21

address specified by an endian conversion setting and
has a size specified by the endian conversion setting as
corresponding to the address, wherein (1) the address
of the main memory to be subjected to the endian
conversion and (2) the size that corresponds to the
address and with which the endian conversion is to be
performed are included in the endian conversion set-
ting; and

an endian conversion circuit that performs, based on the
swap instruction, the endian conversion of the data.

10. The system according to claim 9, wherein

the generation circuit generates the swap instruction,
based on the address of the main memory specified by
the endian conversion setting included in the program.

11. The system according to claim 9, wherein

the generation circuit generates the swap instruction when
the address of the main memory is included in an
endian conversion area and the endian conversion
setting exists for the address of the main memory.

12. The system according to claim 9, comprising

a swap circuit that based on the swap instruction, rear-
ranges the data by a predetermined unit.

#* #* #* #* #*

10

15

20

22

